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Stress and tangent update equations for combined time-hardening
creep and J2 plasticity in an implicit hypo-elastic formulation

Naveen Prakasha,, Christopher Matthewsb,, Daniele Versinoa,

aTheoretical Division, T-3, Los Alamos National Laboratory
Los Alamos, New Mexico 87545, USA

bMaterial Science and Technology, MST-8, Los Alamos National Laboratory
Los Alamos, New Mexico 87545, USA

Abstract

This work is motivated by the need to analyze the behavior of metallic nuclear fuels which under
normal operating conditions build up stresses due to non-homogeneous thermal expansion, fission
gas and solid product swelling among other phenomena that are simultaneously relaxed by creep
and plastic flow. This report details the stress and tangent update equations for combined J2 based
rate independent plasticity and time-hardening creep effects in a fully implicit hypo-elastic for-
mulation involving two cases: pure creep without plasticity where the yield criterion has not yet
been met and the combined effect of both creep and plasticity beyond yield. Closed form expres-
sions for the consistent material tangent to be used in both cases are derived which can be used in
implicit codes and is expected to help in obtaining optimal convergence rates.

1. Background and motivation

Metallic nuclear fuels exhibit extremely complex behavior during irradiation which include
but are not limited to thermal expansion, swelling due to fission and solid products of nuclear
fission, phase transformation, creep and plastic flow, damage and cracking. Over the years, many
numerical codes have been developed to simulate metallic nuclear fuels, most of which are based
on reduced order models [1]. As there is increasing need to perform full scale 3D analyses over
long periods of operation (time scales of weeks to months), there is a need to develop full 3D
equations for the material behavior [2]. Moreover to achieve this, implicit finite element codes are
being used increasingly so that there is no restriction on the time step as is common in explicit
finite element codes. To ensure optimal convergence rates of the global finite element equations,
the consistent material tangent should be provided to the finite element solver in accordance with
the algorithm used for the stress update. A material tangent evaluated numerically could be used
but would also be expensive to compute [3, 4]. A closed form expression for the material tangent
would be considerably more computationally efficient than using an explicit finite element solution
or evaluating a numerical tangent.
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Metallic fuels often exhibit creep and plastic flow, especially when operating at high tempera-
tures which relax stresses in the fuel built up by other phenomena such as thermal expansion and
fission gas swelling. In this work, closed form expressions are derived for the stress and consis-
tent material tangent update for either of two possible cases where the material: (1) is within the
yield surface and undergoing creep flow or (2) has yielded and undergoing both creep and plas-
tic flow simultaneously. Although metallic fuel alloys such as U-Pu-Zr are often assumed to be
elastic-perfectly plastic [1], it is assumed for the present purposes that the plastic flow follows an
isotropic hardening law to introduce more generality in the constitutive behavior.

2. Evolution of stress

Assume that the total strain tensor ε can be additively decomposed into a linear elastic strain
εel, thermal strain εth, plastic strain epl and creep strain ecr such that in rate form,

ε̇ = ε̇el + ε̇th + ε̇pl + ε̇cr (1)

Assume that the material response is linear elastic such that,

σ̇ = C :
(
ε̇ − ε̇th − ε̇pl − ε̇cr

)
(2)

Using a backward (implicit) Euler integration scheme ( Eqns. (1.4.4), Simo and Hughes [5]) and
assuming C to be constant, the incremental form of (2) can be written as,

∆σ = C :
(
∆ε − ∆εth − ∆εpl − ∆εcr

)
n+1

(3)

which can be written in terms of the nth and n + 1th time step as,

σn+1 = σn + C :
(
∆ε − ∆εth − ∆εpl − ∆εcr

)
n+1

(4)

where the right hand side has inelastic strains which may be functions of variables that are eval-
uated at at time step n + 1. As is commonly done, the thermal strain is assumed to be purely
volumetric in nature and the creep and plastic strains are assumed to be purely deviatoric such that
the volumetric and deviatoric components of the elastic strain can be written as,

vol(∆εel) = vol(∆ε − ∆εth) =
1
3

tr(∆ε − ∆εth)1 (5)

dev(∆εel) = ∆e − ∆epl − ∆ecr (6)

where vol(·) and dev(·) denote the volumetric and deviatoric components of their arguments, 1 is
the second order identity tensor or the Kronecker delta tensor and ∆e is the deviatoric part of the
total strain increment. Rearranging terms in the (4), and writing the current stress σn+1 in terms of
the hydrostatic and deviatoric components,

σn+1 = σh
n + ∆σh

n+1

[
vol(∆εel

n+1)
]

+ sn + ∆sn+1

[
dev(∆εel

n+1)
]

(7)
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in which the hydrostatic component of the stress at n + 1 can be completely determined from
knowing the stress state at n, and the total strain and thermal strain increments.

The deviatoric component of stress at n + 1 is written as,

sn+1 = sn + ∆sn+1

[
dev(∆εel

n+1)
]

(8)

= sn + ∆sn+1

(
∆en+1 − ∆epl

n+1 − ∆ecr
n+1

)
(9)

= sn + 2µ
(
∆en+1 − ∆epl

n+1 − ∆ecr
n+1

)
(10)

Assuming that the step from n to n + 1 is a purely elastic one, and writing the resulting stress as
strial

n+1 ,
sn+1 = strial

n+1 − 2µ
(
∆epl

n+1 + ∆ecr
n+1

)
(11)

where the trial stress is strial
n+1 = sn + 2µ (∆en+1), and the plastic and creep strains at n + 1 are yet to

be determined.

2.1. Rate independent plasticity
Under the assumption of classical rate independent associative plasticity, the plastic strain rate

is written as
ėpl = λ̇

∂ f
∂σ

(12)

where λ̇ is a positive scalar quantity and f is a specified yield function generally written in terms
of the deviatoric stress s. The incremental form for the plastic strain can be written as,

∆epl
n+1 =

(
∆λ

∂ f
∂σ

)
n+1

(13)

In J2 plasticity, the yield function is in general is written in terms of the second invariant of the
deviatoric stress,

J2 =
1
2

s : s (14)

where s is the deviatoric stress defined by by s = σ − 1
3 tr(σ)1. A common form for the yield

function f is,

f =
√

2J2 −

√
2
3
σY(α) (15)

where
√

2J2 amounts to the magnitude of the deviatoric stress, ‖s‖ =
√

s : s, σY is the yield stress
of the material which can be a function of the accumulated plastic strain α whose evolution is
assumed to be,

α̇ = λ̇

√
2
3

(16)

the algorithmic counter part of the yield function, written at time n + 1 is,

fn+1 = ‖sn+1‖ −

√
2
3
σY(αn+1) (17)
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where the accumulated plastic strain is given by,

αn+1 = αn + ∆λ

√
2
3

(18)

Knowing that the second term in the yield function in (17) is a constant yield stress at n + 1, the
gradient of f with respect to the stress is simply,

(
∂ f
∂σ

)
n+1

=
∂‖sn+1‖

∂σn+1
(19)

=
sn+1

‖sn+1‖
(20)

= nn+1 (21)

Therefore, substituting (21) in (13), the plastic strain increment can be written as,

∆epl
n+1 = ∆λnn+1 (22)

where ∆λ specifies that magnitude of plastic strain increment and nn+1 specifies the direction of
plastic flow.

2.2. Time-hardening creep
Time dependent creep laws are often written in a strain-hardening or time-hardening form. A

law of the latter type is assumed here, where the creep strain rate is,

ėcr
n+1 = ˙̄ecr

n+1 (σ̃n+1,Tn+1, tn+1) ñn+1(s) (23)

The creep strain increment can be written as,

∆ecr
n+1 = ∆ēcr

n+1 (σ̃n+1,Tn+1, tn+1) ñn+1(s) (24)

where ∆ēcr
n+1 is the magnitude of the creep strain increment which depends on the current von Mises

stress, time, temperature and other constants which are material parameters that can be estimated
from a uniaxial creep test, and ñn+1(s) is the direction of flow of creep which is some function of
the deviatoric stress. As is commonly done, the direction of creep is assumed to be such that,

ñn+1 =
∂σ̃n+1

∂σn+1
(25)

where σ̃n+1 is the von Mises stress. To be consistent with the direction of plastic flow, the direction
of creep is written in terms of n such that,

∆ecr
n+1 = ∆ēcr

n+1 (σ̃n+1,Tn+1, tn+1)

√
3
2

nn+1 (26)
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Consider that a power law for creep strain is assumed in it’s ‘time hardening’ form such that
the creep strain rate is given by,

˙̄ecr = Aσ̃mtne−Q/RT (27)

where σ̃ is the von-Mises stress, t is time, Q is the activation energy of the creep mechanism, R
is the Boltzmann’s constant, T is the absolute temperature and A,m and n are material parameters.
Using an implicit time integration scheme, the creep strain increment can be written as,

∆ēcr
n+1 = ∆tAσ̃m

n+1tn
n+1e−Q/RTn+1 (28)

where the material parameter n appearing as the exponential term for time t is not to be confused
with the number of the time step appearing in the subscript.

2.3. Evaluating the deviatoric stress
Substituting (26), (28) and (22) in (11)

sn+1 = strial
n+1 − 2µ

∆λnn+1 +
(
∆tAσ̃m

n+1tn
n+1e−Q/RTn+1

) √
3
2

nn+1

 (29)

The unit normal tensor can be evaluated by knowing the trial stress state at n + 1, which can
be determined from the state of the material at n and the total applied strain increment (strial

n+1 =

sn + 2µ ∆en+1). Both the deviatoric and the trial deviatoric stress, sn+1 and strial
n+1 can be shown to

have the same unit normal tensor nn+1 [5], therefore can be determined as,

nn+1 =
strial

n+1∥∥∥strial
n+1

∥∥∥ =
sn+1

‖sn+1‖
(30)

Contracting with both sides of (29) with the unit normal tensor nn+1, one obtains,

‖sn+1‖ =
∥∥∥strial

n+1

∥∥∥ − 2µ ∆λ − 2µ

√
3
2

(
∆tAσ̃m

n+1tn
n+1e−Q/RTn+1

)
(31)

Writing (31) as a residual,

R = ‖sn+1‖ −
∥∥∥strial

n+1

∥∥∥ + 2µ ∆λ + 2µ

√
3
2

(
∆tAσ̃m

n+1tn
n+1e−Q/RTn+1

)
(32)

2.4. Pure creep
In the case of creep without any plastic effects, the nonlinear equation to be solved to evaluate

the deviatoric stress at the current time step reduces to,

R = ‖sn+1‖ −
∥∥∥strial

n+1

∥∥∥ + 2µ

√
3
2

(
∆tAσ̃m

n+1tn
n+1e−Q/RTn+1

)
(33)

The von-Mises stress can be written in terms of the deviatoric stress as,

σ̃n+1 =

√
3
2
‖sn+1‖ (34)
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Substituting into Eqn, (33),

R = ‖sn+1‖ −
∥∥∥strial

n+1

∥∥∥ + 2µ

√
3
2

∆tA


√

3
2

m

‖sn+1‖
mtn

n+1e−Q/RTn+1

 (35)

The residual is written in terms of a single unknown variable, ‖sn+1‖ and can be evaulated using
a Newton-Raphson iterative scheme. To evaluate the deviatoric stress and the material tangent,
the creep strain increment and the derivative of the creep strain increment are required which are
respectively given by,

∆ēcr = ∆tA


√

3
2

m

‖sn+1‖
mtn

n+1e−Q/RTn+1 (36)

∂∆ēcr

∂‖sn+1‖
= ∆tA


√

3
2

m

m‖sn+1‖
(m−1)tn

n+1e−Q/RTn+1 (37)

2.5. Combined creep and plasticity
Similarly, the residual to evaluate the plastic multiplier in the case of combined creep and

plasticity is given by,

R =

√
2
3
σY −

∥∥∥strial
n+1

∥∥∥ + 2µ ∆λ + 2µ

√
3
2

∆ēcr
n+1 (σY) (38)

in which case the deviatoric stress must lie on the yield surface i.e.,

‖sn+1‖ =

√
2
3
σY =

√
2
3
σY0 +

√
2
3

K(αn+1) (39)

For this case, the residual can be written in terms of the incremental plastic multiplier which is to
be determined.

The creep strain increment in terms of the deviatoric stress is,

∆ēcr
n+1 = ∆tA


√

3
2

m

‖sn+1‖
m tn

n+1e−Q/RTn+1 (40)

which can be written in terms of the yield stress as,

∆ēcr
n+1 = ∆tAσm

Y tn
n+1e−Q/RTn+1 (41)

To find the solution to the nonlinear equation given by the residual, the derivative of the creep
strain increment with respect to the plastic multiplier is required which can be written as,

∂∆ēcr
n+1

∂∆λ
= ∆tAmσ(m−1)

Y
∂σY

∆λ
tn
n+1e−Q/RTn+1 (42)
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A closed form expression for the derivative of the yield stress can be found if the hardening law
is known. For example, considering a linear hardening law, the derivative of the yield stress with
respect to the plastic multiplier is,

∂σY

∂∆λ
=

∂

∂∆λ

σY0 + K̃αn +

√
2
3

K̃∆λ


=

√
2
3

K̃ (43)

The following terms are then required to find the plastic multiplier and the material tangent,

∆ēcr = ∆tAσm
Y tn

n+1e−Q/RTn+1

= ∆tA

σY0 + K̃αn +

√
2
3

K̃∆λ

m

tn
n+1e−Q/RTn+1 (44)

∂∆ēcr
n+1

∂∆λ
= ∆tAmσ(m−1)

Y
∂σY

∆λ
tn
n+1e(−Q/RTn+1)

= ∆tAmσ(m−1)
Y

√
2
3

K̃ tn
n+1e−Q/RTn+1 (45)

3. Consistent Material Tangent

3.1. Combined Plasticity and Creep
The constitutive equation at time step n + 1 can be written as,

σn+1 = 3K vol(εel
n+1) + 2µ dev(εel) (46)

where the elastic strain can be written in terms of the total strain and the inelastic strains. From
(5) and (6), (46) can be written as,

σn+1 = 3K
1
3

tr(εel
n+1)1 + 2µ dev(εel

n+1) (47)

= K tr(εel
n+1)1 + 2µ dev(εel) (48)

= K tr(εn+1 − ε
th
n+1)1 + 2µ(en+1 − epl

n+1 − ecr
n+1) (49)

As in Simo and Hughes [5] (section 3.3.2), the consistent tangent can be obtained by a linearization
of the algorithmic constitutive equation (49). Differentiating the expression one obtains,

dσn+1 = K tr(dεn+1 − dεth
n+1)1 + 2µ(den+1 − depl

n+1 − decr
n+1) (50)

where the plastic and creep strains can be written as,

depl
n+1 = depl

n + d∆epl
n+1 (51)

decr
n+1 = decr

n + d∆ecr
n+1 (52)
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Decomposing (50) into an elastic step and an inelastic correction using Eqs. (51) and (52),

dσn+1 = C : dεn+1 − 2µ
(
d∆epl

n+1 + d∆ecr
n+1

)
(53)

Rewriting this equation in terms of the total strain,

dσn+1 =

C − 2µ
∂∆epl

n+1

∂εn+1
− 2µ

∂∆ecr
n+1

∂εn+1

 : dεn+1 (54)

= [C − B − A] : dεn+1 (55)

From (22), the plastic strain increment can be written as,

∆epl
n+1 = ∆λnn+1 (56)

Differentiating,

∂∆epl
n+1

∂εn+1
=
∂(∆λnn+1)
∂εn+1

(57)

= nn+1 ⊗
∂∆λ

∂εn+1
+ ∆λ

∂nn+1

∂εn+1
(58)

Therefore, the second term in the square brackets in (54), B can be written as,

B = nn+1 ⊗
∂∆λ

∂εn+1
+ ∆λ

∂nn+1

∂εn+1
(59)

Similarly from (26),
∂∆ecr

n+1

∂εn+1
=

√
3
2

(
nn+1 ⊗

∂∆ēcr
n+1

∂εn+1
+ ∆ēcr

n+1
∂nn+1

∂εn+1

)
(60)

Similar to (59), the third term in the square brackets in (54) can be written as,

A = 2µ

√
3
2

(
nn+1 ⊗

∂∆ēcr
n+1

∂εn+1
+ ∆ēcr

n+1
∂nn+1

∂εn+1

)
(61)

Substituting (59) and (61) in (55) and simplifying,

dσn+1 =

C − 2µ
∂nn+1

∂εn+1

∆λ +

√
3
2

∆ēcr
n+1

 − 2µnn+1 ⊗

 ∂∆λ

∂εn+1
+

√
3
2
∂∆ēcr

n+1

∂εn+1

 : dεn+1 (62)

in which matrices A and B that account for the modification of the material stiffness matrix C due
to inelastic effects have to be determined from the trial stress state at time n + 1. To find these
matrices the unit normal tensor nn+1, plastic strain increment ∆λ, creep strain increment ∆ēcr

n+1 and
the respective partial derivatives with respect to the total applied strain εn+1 need to be evaluated.
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3.1.1. Evaluating the unit normal tensor and inelastic strain increments
The unit normal tensor can be evaluated by knowing the trial stress state at n + 1, which can

be determined from the state of the material at n and the total applied strain increment (strial
n+1 =

sn + 2µ (∆en+1)). Both the deviatoric and the trial deviatoric stress, sn+1 and strial
n+1 can be shown to

have the same unit normal tensor nn+1 [5], therefore can be determined as,

nn+1 =
strial

n+1∥∥∥strial
n+1

∥∥∥ (63)

To determine the inelastic strain increments, one starts with the yield function (17), assuming
once again a linear isotropic hardening law, can be written in terms of the yield stress in the
unhardened state σY0 and the hardening term K(αn+1) as,

fn+1 = ‖sn+1‖ −

√
2
3
σY0 −

√
2
3

K(αn+1) (64)

where αn+1 is the accumulated hardening strain at time n + 1. If the material has yielded, the stress
state must lie on the yield surface, or in other words, fn+1 must be zero which means,

0 = ‖sn+1‖ −

√
2
3
σY0 −

√
2
3

K(αn+1) (65)

‖sn+1‖ =

√
2
3
σY0 −

√
2
3

K(αn+1) (66)

From the trial deviatoric stress state in (11),

sn+1 = strial
n+1 − 2µ

(
∆epl

n+1 + ∆ecr
n+1

)
(67)

Substituting in (67) from Eqs. (56) and (26) and contracting with both sides with the unit normal
tensor nn+1, one obtains,

‖sn+1‖ =
∥∥∥strial

n+1

∥∥∥ − 2µ∆λ − 2µ

√
3
2

∆ēcr
n+1 (68)

It should also be noted that the magnitude of increment in creep strain here depends on a few
variables one of which is the stress state at n+1, particularly the von-Mises stress, which indirectly
makes it a function of the deviatoric stress at n + 1. Therefore (68) should ideally be written as,

‖sn+1‖ =
∥∥∥strial

n+1

∥∥∥ − 2µ∆λ − 2µ

√
3
2

∆ēcr
n+1(‖sn+1‖) (69)

which is to say this is a nonlinear equation in ‖sn+1‖. Substituting (66) in (68), meaning the
deviatoric stress at n + 1 should lie on the yield surface, one obtains,√

2
3
σY0 −

√
2
3

K(αn+1) =
∥∥∥strial

n+1

∥∥∥ − 2µ∆λ − 2µ

√
3
2

∆ēcr
n+1

√2
3
σY0 +

√
2
3

K(αn+1)

 (70)
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This equation can be solved for the plastic multiplier ∆λ numerically by an iterative Newton-
Raphson scheme by writing the residual as,

R =

√
2
3
σY0 −

√
2
3

K(αn+1) −
∥∥∥strial

n+1

∥∥∥ + 2µ∆λ + 2µ

√
3
2

∆ēcr
n+1

√2
3
σY0 +

√
2
3

K(αn+1)

 (71)

and solving R ≈ 0, provided an explicit expression is known for the isotropic hardening variable K

(e.g. a linear isotropic hardening law can be assumed such that K(αn+1) = K̃αn+1 = K̃(αn +

√
2
3∆λ)

) so that the evolution of the yield surface is known in terms of the plastic multiplier. Once the
plastic multiplier ∆λ is solved for and the accumulated plastic strain αn+1 is known, the creep strain
increment ēcr

n+1 can be evaluated. Other terms which are needed to evaluate the consistent material
tangent are the partial derivatives ∂nn+1/∂εn+1, ∂∆λ/∂εn+1 and ∂∆ēcr

n+1/∂εn+1.

Derivative of the plastic multiplier. The derivative of the plastic multiplier with respect to the total
applied strain can be obtained from differentiating the residual in (71),

∂R
∂εn+1

= 0 =

√
2
3
∂K(αn+1)
∂αn+1

∂αn+1

∂∆λ

∂∆λ

∂εn+1
−
∂
∥∥∥strial

n+1

∥∥∥
∂εn+1

+ 2µ
∂∆λ

∂εn+1
+ 2µ

√
3
2
∂∆ēcr

n+1

∂αn+1

∂αn+1

∂∆λ

∂∆λ

∂εn+1
(72)

0 =

√
2
3

K′(αn+1)

√
2
3
∂∆λ

∂εn+1
− 2µnn+1 + 2µ

∂∆λ

∂εn+1
+ 2µ

√
3
2

∆ε̃cr′
n+1

√
2
3
∂∆λ

∂εn+1
(73)

where the primes quantities (.)′ indicated the derivative with respect to the accumulated plastic
strain αn+1. Collecting and rearranging terms, one obtains,

∂∆λ

∂εn+1

(
2
3

K′(αn+1) + 2µ∆ε̃cr′
n+1 + 2µ

)
= 2µnn+1 (74)

∂∆λ

∂εn+1
=

nn+1[
1 + ∆ε̃cr′

n+1 +
K′(αn+1)

3µ

] (75)

Derivative of the unit normal tensor. From (63), the derivative of the unit normal tensor can be
written as,

∂nn+1

∂εn+1
=

1∥∥∥strial
n+1

∥∥∥ ∂strial
n+1

∂εn+1
−

strial
n+1∥∥∥strial

n+1

∥∥∥2

∂
∥∥∥strial

n+1

∥∥∥
∂αn+1

∂αn+1

∂∆λ
⊗
∂∆λ

∂εn+1
(76)

Knowing that the trial deviatoric stress state is strial
n+1 = sn + 2µ∆en+1, where ∆en+1 = en+1 − en and

en+1 = Idevεn+1, the derivative can be written as,

∂strial
n+1

∂εn+1
=

∂strial
n+1

∂∆en+1

∂∆en+1

∂en+1

∂en+1

∂εn+1
(77)

= 2µ Idev (78)

where Idev is the deviatoric projection tensor [6], Idev =
[
Isym
− 1

31 ⊗ 1
]

10



The expression for the derivative of the magnitude of the trial deviatoric stress with respect to
the accumulated plastic strain can be obtained by differentiating the expression for the residual in
(71),

∂
∥∥∥strial

n+1

∥∥∥
∂αn+1

=

√
2
3

K′(αn+1) + 2µ
∂∆λ

∂αn+1
+ 2µ

√
3
2

∆ε̃cr′
n+1 (79)

=

√
2
3

K′(αn+1) + 2µ

√
3
2

+ 2µ

√
3
2

∆ε̃cr′
n+1 (80)

where the term ∂∆λ
∂αn+1

can be evaluated to be
√

3
2 , therefore the term ∂αn+1

∂∆λ
is

√
2
3 . Substituting in

(76),

∂nn+1

∂εn+1
=

2µ Idev∥∥∥strial
n+1

∥∥∥ − strial
n+1∥∥∥strial

n+1

∥∥∥2

[
2
3

K′(αn+1) + 2µ∆ε̃cr′
n+1 + 2µ

]
⊗
∂∆λ

∂εn+1
(81)

=
2µ Idev∥∥∥strial

n+1

∥∥∥ − 2µ
nn+1∥∥∥strial

n+1

∥∥∥
[
1 + ∆ε̃cr′

n+1 +
K′(αn+1)

3µ

]
⊗
∂∆λ

∂εn+1
(82)

In light of the expression (75), (82) becomes,

∂nn+1

∂εn+1
=

2µ Idev∥∥∥strial
n+1

∥∥∥ − 2µ∥∥∥strial
n+1

∥∥∥nn+1 ⊗ nn+1 (83)

=
2µ∥∥∥strial
n+1

∥∥∥ (
Idev − nn+1 ⊗ nn+1

)
(84)

Derivative of the creep strain increment. Finally, the derivative of the creep strain increment with
respect to the total applied strain can be written as,

∂∆ēcr
n+1

∂εn+1
=
∂∆ēcr

n+1

∂αn+1

∂αn+1

∂∆λ

∂∆λ

∂εn+1
(85)

= ∆ε̃cr′
n+1

√
2
3

nn+1[
1 + ∆ε̃cr′

n+1 +
K′(αn+1)

3µ

] (86)

Tangent modulus contd.
Substituting Eqs. (75), (83) and (86) in (62) and rearranging,

dσn+1 =

[
C − (2µ)2 Idev∥∥∥strial

n+1

∥∥∥
∆λ +

√
3
2

∆ēcr
n+1


+ (2µ)2 1∥∥∥strial

n+1

∥∥∥
∆λ +

√
3
2

∆ēcr
n+1

 nn+1 ⊗ nn+1

−
2µ
γ

nn+1 ⊗ nn+1 −
2µ
γ

∆ε̃cr′
n+1 nn+1 ⊗ nn+1

]
: dεn+1 (87)

11



or,
dσn+1 = J : dεn+1 (88)

such that the material tangent is given by,

J =

[
C −

(2µ)2∥∥∥strial
n+1

∥∥∥ Idevβ +

 (2µ)2∥∥∥strial
n+1

∥∥∥β − 2µ
γ

∆ε̃cr′
n+1 −

2µ
γ

 nn+1 ⊗ nn+1

]
(89)

where, γ =
[
1 + ∆ε̃cr′

n+1 +
K′(αn+1)

3µ

]
and β =

(
∆λ +

√
3
2∆ēcr

n+1

)
.

As a sanity check, it can be verified that in the absence of creep effects, the material tangent
reduces to,

Jep =

[
C −

(2µ)2∥∥∥strial
n+1

∥∥∥ Idev∆λ +

 (2µ)2∥∥∥strial
n+1

∥∥∥∆λ −
2µ[

1 +
K′(αn+1)

3µ

] nn+1 ⊗ nn+1

]
(90)

which is the same as the consistent elastoplastic tangent given in Simo and Hughes [5], pg. 124.,

3.2. Pure Creep
The previous section details the material tangent for combined creep and plasticity behavior

where it is assumed explicitly that the material has yielded, therefore the stress state at the current
time step n + 1 lies on the yield surface. However, if the material has not yielded, the creep strain
at n + 1 depends on the stress state at n + 1 which is yet to be determined. From the Eqn. (53),
assuming that there is no plasticity,

dσn+1 = C : dεn+1 − 2µ
(
d∆ecr

n+1
)

(91)

From Eqn. (26),

∆ecr
n+1 = ∆ēcr

n+1 (σ̃n+1,Tn+1, tn+1)

√
3
2

nn+1 (92)

Differentiating this expression,

d∆ecr
n+1 = d

∆ēcr
n+1 (σ̃n+1,Tn+1, tn+1)

√
3
2

nn+1

 (93)

= ∆ēcr
n+1

√
3
2

dnn+1 +

√
3
2

nn+1d∆ēcr
n+1 (94)

Substituting Eqn. (94) in Eqn. (91),

dσn+1 = C : dεn+1 − 2µ

∆ēcr
n+1

√
3
2

dnn+1 +

√
3
2

nn+1d∆ēcr
n+1

 (95)

12



Writing in terms of the total strain,

dσn+1 =

C − 2µ

√
3
2

∆ēcr
n+1
∂nn+1

∂εn+1
− 2µ

√
3
2

nn+1 ⊗
∂∆ēcr

n+1

∂εn+1

 : dεn+1 (96)

The partial derivative of the unit normal tensor with respect to the total strain can be written as,

∂nn+1

∂εn+1
=
∂nn+1

∂sn+1

∂sn+1

∂σn+1

∂σn+1

∂εn+1
(97)

where from Eqn. 3.3.9 in Simo and Hughes [5], (see also appendix),

∂nn+1

∂sn+1
=

1
‖sn+1‖

[Isym − nn+1 ⊗ nn+1] (98)

∂sn+1

∂σn+1
= Idev (99)

where, Idev is the deviatoric projection tensor given by,

Idev =

[
Isym
−

1
3

1 ⊗ 1
]

(100)

such that,
sn+1 = Idev : σn+1 (101)

Substituting in Eqn. (97),

∂nn+1

∂εn+1
=

1
‖sn+1‖

[Isym − nn+1 ⊗ nn+1] Idev∂σn+1

∂εn+1
(102)

which can be simplified to,

∂nn+1

∂εn+1
=

1
‖sn+1‖

[
Idev − nn+1 ⊗ nn+1

] ∂σn+1

∂εn+1
(103)

Similarly,
∂∆ēcr

n+1

∂εn+1
=
∂∆ēcr

n+1

∂‖sn+1‖

∂‖sn+1‖

∂σn+1

∂σn+1

∂εn+1
(104)

where ∂‖sn+1‖

∂σn+1
= nn+1 from Eqn. (21) and ∂∆ēcr

n+1
∂‖sn+1‖

is yet to be determined. Substituting in Eqn. (104),

∂∆ēcr
n+1

∂εn+1
=
∂∆ēcr

n+1

∂‖sn+1‖
nn+1

∂σn+1

∂εn+1
(105)

Substituting for ∂nn+1
∂εn+1

and ∂∆ēcr
n+1

∂εn+1
in Eqn. (96) and rearranging,

dσn+1 = C : dεn+1 −

2µ
√

3
2

∆ēcr
n+1

‖sn+1‖

[
Idev − nn+1 ⊗ nn+1

] : dσn+1

−

2µ
√

3
2
∂∆ēcr

n+1

∂‖sn+1‖
nn+1 ⊗ nn+1

 : dσn+1 (106)
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moving the second and third term from the right hand side to the left,Isym + 2µ

√
3
2

∆ēcr
n+1

1
‖sn+1‖

(
Idev − nn+1 ⊗ nn+1

)
+ 2µ

√
3
2
∂∆ēcr

n+1

∂‖sn+1‖
nn+1 ⊗ nn+1

 :dσn+1

=C : dεn+1 (107)

where Isym is the symmetric fourth order identity tensor. If the term in the square brackets on the
left hand side is written at Ã, then Eqn. (107) can be written as,

Ã : dσn+1 = C : dεn+1 (108)

and the material tangent can be written as,

dσn+1 = Ã−1
C : dεn+1 (109)

where,

Ã =

Isym + 2µ

√
3
2

∆ēcr
n+1

1
‖sn+1‖

(
Idev − nn+1 ⊗ nn+1

)
+ 2µ

√
3
2
∂∆ēcr

n+1

∂‖sn+1‖
nn+1 ⊗ nn+1

 (110)

=

Isym + 2µ

√
3
2

∆ēcr
n+1

‖sn+1‖
Idev + 2µ

√
3
2

(
−

∆ēcr
n+1

‖sn+1‖
+
∂∆ēcr

n+1

∂‖sn+1‖

)
nn+1 ⊗ nn+1

 (111)

Here the unit normal tensor nn+1 can be obtained directly from the trial deviatoric stress, how-
ever the magnitude of the deviatoric stress, the creep strain increment and derivative of the creep
strain increment, i.e. ‖sn+1‖, ∆ēcr

n+1 and ∂∆ēcr
n+1

∂‖sn+1‖
are yet to be determined. Similar to Eqn. (68), the

magnitude of the deviatoric stress can be written as,

‖sn+1‖ =
∥∥∥strial

n+1

∥∥∥ − 2µ

√
3
2

∆ēcr
n+1 (112)

where the creep strain increment ∆ēcr
n+1 is some function of the current stress state σn+1 and fur-

thermore is generally a function of the current von-Mises stress state or indirectly, the deviatoric
stress state,

‖sn+1‖ =
∥∥∥strial

n+1

∥∥∥ − 2µ

√
3
2

∆ēcr
n+1(‖sn+1‖) (113)

Therefore, this is in general, a nonlinear equation in ‖sn+1‖ which can be solved by a Newton-
Raphson iterative scheme. If the residual is written as,

R = ‖sn+1‖ −
∥∥∥strial

n+1

∥∥∥ + 2µ

√
3
2

∆ēcr
n+1(‖sn+1‖) (114)

solving for R ≈ 0, the quantities ‖sn+1‖, ∆ēcr
n+1 and ∂∆ēcr

n+1
∂‖sn+1‖

can be determined provided an explicit
expression for the creep strain increment in terms of the magnitude of deviatoric stress is known.
Substituting these quantities in Eqn. (110), the material tangent can be obtained from Eqn. (109).

14



4. Acknowledgements

This work was sponsored by the U.S. Department of Energy, Office of Nuclear Energy, Ad-
vanced Fuels Campaign (AFC) program. Los Alamos National Laboratory, an affirmative ac-
tion/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the Na-
tional Nuclear Security Administration of the U.S. Department of Energy under Contract No.
DE-AC52-06NA25396.

References

[1] Aydin Karahan. Modelling of thermo-mechanical and irradiation behavior of metallic and oxide fuels for sodium
fast reactors. PhD thesis, Massachusetts Institute of Technology, 2009.

[2] RL Williamson, JD Hales, SR Novascone, MR Tonks, DR Gaston, CJ Permann, D Andrs, and RC Martineau.
Multidimensional multiphysics simulation of nuclear fuel behavior. Journal of Nuclear Materials, 423(1-3):149–
163, 2012.
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Appendix A. Appendices

Appendix A.1. Normal tensor

∂ f
∂σ

=
∂(
√

2J2)
∂σ

(A.1)

=
1

2
√

2J2

∂(2J2)
∂σ

(A.2)

=
1
√

s : s
∂J2

∂σ
(A.3)

J2, the second invariant of the deviatoric stress can be written in terms of the invariants of the stress
tensor as,

J2 =
1
3

I2
1 − I2 (A.4)

The gradient of J2 can be written as

∂J2

∂σ
=

1
3

2I1
∂I1

∂σ
−
∂I2

∂σ

=
2
3

I11 − (I11 − σT)

= σ −

(
I1 −

2
3

I1

)
1

= σ −
1
3

tr(σ)1

= s (A.5)

Substituting (A.5) in (A.3), the gradient of f with respect to σ is obtained as,

∂ f
∂σ

=
s

√
s : s

(A.6)

= n (A.7)

Appendix A.2. Derivative of the unit normal tensor with the deviatoric stress
The unit normal tensor is given by

n =
s

√
s : s

(A.8)

Taking the derivative with respect to the deviatoric stress tensor and changing to index notation

∂ni j

∂skl
=

√
s : s ∂si j

∂skl
− si j

∂
√

s:s
∂skl

(
√

s : s)2
(A.9)
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where the first derivative in the numerator is the symmetric fourth order identity tensor,

∂si j

∂skl
= I sym

i jkl (A.10)

To evaluate the second derivative in the numerator, first write
√

s : s =
√

2J2 (A.11)

Which implies,

∂
√

s : s
∂skl

=
∂
√

2J2

∂skl

=
∂
√

2J2

∂σmn

∂σmn

∂skl

=

√
2

2
√

J2

∂J2

∂σmn
Idev
mnkl

=
1
√

2J2
smnIdev

mnkl

=
1
‖s‖

skl

= nkl (A.12)

Substituting in (A.9)

∂ni j

∂skl
=

√
s : sI sym

i jkl − si jnkl

(
√

s : s)2

=
‖s‖I sym

i jkl − si jnkl

‖s‖2

=
I sym
i jkl − ni jnkl

‖s‖

=
1
‖s‖

(
I sym
i jkl − ni jnkl

)
(A.13)

Or in tensor notation, this can be written as

∂n
∂s

=
1
‖s‖

(Isym − n⊗ n) (A.14)
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